Approximate solution of the stochastic Volterra integral equations via expansion method
Authors
Abstract:
In this paper, we present an efficient method for determining the solution of the stochastic second kind Volterra integral equations (SVIE) by using the Taylor expansion method. This method transforms the SVIE to a linear stochastic ordinary differential equation which needs specified boundary conditions. For determining boundary conditions, we use the integration technique. This technique gives an approximate simple and closed form solution for the SVIE. Expectation of the approximating process is computed. Some numerical examples are used to illustrate the accuracy of the method.
similar resources
approximate solution of the stochastic volterra integral equations via expansion method
in this paper, we present an efficient method for determining the solution of the stochastic second kind volterra integral equations (svie) by using the taylor expansion method. this method transforms the svie to a linear stochastic ordinary differential equation which needs specified boundary conditions. for determining boundary conditions, we use the integration technique. this technique give...
full textApproximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method
In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...
full textexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولA computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations
A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...
full textApproximate solution of dual integral equations
We study dual integral equations which appear in formulation of the potential distribution of an electrified plate with mixed boundary conditions. These equations will be converted to a system of singular integral equations with Cauchy type kernels. Using Chebyshev polynomials, we propose a method to approximate the solution of Cauchy type singular integral equation which will ...
full textConvergence of Approximate Solution of Nonlinear Volterra-Fredholm Integral Equations
In this study, an effective technique upon compactly supported semi orthogonal cubic Bspline wavelets for solving nonlinear Volterra-Fredholm integral equations is proposed. Properties of B-spline wavelets and function approximation by them are first presented and the exponential convergence rate of the approximation, Ο(2 -4j ), is proved. For solving the nonlinear Volterra-Fredholm integral eq...
full textMy Resources
Journal title
volume 6 issue 1
pages 41- 48
publication date 2014-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023